Существуют два общих подхода к получению дисп. систем – дисперсионный и конденсационный. Дисперсионный метод основан на измельчении макроскопических частиц до наноразмеров (1-100 нм).

Механическое измельчение не получило широкого распространения из-за большой энергоемкости. В лабораторной практике используется ультразвуковое измельчение. При измельчении конкурируют два процесса: диспергирование и агрегирование возникающих частиц. Соотношение скоростей этих процессов зависит от длительности помола, температуры, природы жидкой фазы, присутствия стабилизаторов (чаще всего ПАВ). Подбирая оптимальные условия, можно получить частицы требуемого размера, однако распределение частиц по размерам бывает достаточно широким.

Наиболее интересно самопроизвольное диспергирование тв тел в жидкой фазе. Подобный процесс может наблюдаться для веществ, имеющих слоистую структуру. В таких структурах имеет место сильное взаимодействие между атомами внутри слоя и слабое в-д-в взаимодействие между слоями. Например, сульфиды молибдена и вольфрама, имеющие слоистую структуру, самопроизвольно диспергируются в ацетонитриле с образованием бислойных частиц нанометрового размера. При этом жидкая фаза проникает между слоями, увеличивает межслойное расстояние, взаимодействие между слоями ослабевает. Под действием тепловых колебаний происходит отрыв наночастиц с поверхности тв фазы.

Конденсационные методы подразделяются на физические и химические. Формирование наночастицосущствляется через ряд переходных состояний при образовании промежуточных ансамблей, приводящих к возникновению зародыша новой фазы, спонтанному его росту и появлению физической поверхности раздела фаз. Важно обеспечить высокую скорость образования зародыша и малую скорость его роста.

Физические методы широко используются для получения металлических ульрадисперсных частиц. Эти методы по сути являются дисперсионно-конденсационными. На первой стадии металл диспергируют до атомов при испарении. Затем за счет пересыщения паров происходит конденсация.

Метод молекулярных пучков применяют для получения покрытий толщиной около 10 нм. Исходный материал в камере с диафрагмой нагревают до высоких температур в вакууме. Испарившиеся частицы, проходя через диафрагму, образуют молекулярный пучок. Интенсивность пучка и скорость конденсации частиц на подложке можно менять, варьируя температуру и давление пара над исходным материалом.

Аэрозольный метод заключается в испарении металла в разреженной атмосфере инертного газа при пониженной температуре с последующей конденсацией паров. Этим методом были получены наночастицыAu, Fe, Co, Ni, Ag, Al; их оксидов, нитридов, сульфидов.

Криохимический синтез основан на конденсации атомов металла (или соединений металла) при низкой температуре в инертной матрице.

Химическая конденсация . Коллоидный раствор золота (красного) с размером частиц был получен в 1857 г Фарадеем. Этот золь демонстрируют в Британском музее. Устойчивость его объясняется образованием ДЭС на поверхности раздела тв фаза-раствор и возникновением электростатической составляющей расклинивающего давления.

Часто синтез наночастиц проводят в растворе при протекании химических реакций. Для получения металлических частиц применяют реакции восстановления. В качестве восстановителя используют алюмо- и борогидриды, гипофосфиты и др. Например, золь золота с размером частиц 7 нм получают восстановлением хлорида золота боргидридом натрия.

Наночастицы солей или оксидов металлов получают в реакциях обмена или гидролиза.

В качестве стабилизаторов используют природные и синтетические ПАВ.

Были синтезированы наночастицы смешанного состава. Например, Cd/ZnS, ZnS/CdSe, TiO 2 /SiO 2 . Такие наночастицы получают осаждением молекул одного типа (оболочка) на предварительно синтезированной наночастице другого типа (ядро).

Основной недостаток всех методов – это широкое распределение наночастиц по размерам. Один из методов регулирования размеров наночастиц связан с получением наночастиц в обратных микроэмульсиях. В обратных микроэмульсияхдис фаза – вода, дис среда – масло. Размер капель воды (или другой полярной жидкости) может меняться в широких пределах в зависимости от условий получения и природы стабилизатора. Капля воды играет роль реактора, в котором образуется новая фаза. Размер образующейся частицы ограничен размерами капли, форма этой частицы повторяет форму капли.

Золь-гелевый метод содержит следующие стадии: 1. приготовление исходного раствора, обычно содержащего алкоксиды металлов М(ОR) n , где М-это кремний, титан, цинк, алюминий, олово, церий и др., R- алкал или арил; 2. образование геля за счет реакций полимеризации; 3. сушка; 4. термообработка. В органических растворителях проводят гидролиз

М(ОR) 4 +4H 2 OM(OH) 4 +4ROH.

Затем происходит полимеризация и образование геля

mM(OH) n (MO) 2 +2mH 2 O.

Метод пептизации. Различают пептизацию при промывании осадка, пептизацию осадка электролитом; пептизацию поверхностно-активными веществами; химическую пептизацию.

Пептизация при промывании осадка сводится к удалению из осадка электролита, вызвавщего коагуляцию. При этом толщина ДЭС увеличивается, силы ионно-электростатического отталкивания преобладают над силами межмолекулярного притяжения.

Пептизация осадка электролитомсвязана со способностью одного из ионов электролита адсорбироваться на частицах, что способствует формированию ДЭС на частицах.

Пептизация поверхностно-активными веществами. Макромолекулы ПАВ адсорбируясь на частицах или придают им заряд (ионогенные ПАВ) или формируют адсорбционно-сольватный барьер, препятствующий слипанию частиц в осадке.

Химическая пептизация происходит, когда добавляемое в систему вещество взаимодействует с веществом осадка. При этом образуется электролит, формирующий ДЭС на поверхности частиц.

Диализ заключается в очистке коллоидных систем от ионов и молекул низкомолекулярных веществ в результате их диффузии в чистый растворитель через полупроницаемую перегородку (мембрану), через которую не проходят коллоидные частицы. Периодически или непрерывно сменяя растворитель в приборе для диализа – диализаторе (рис.15), можно практически полностью удалить из дисперсных систем примеси электролитов и низкомолекулярных неэлектролитов.

Рис. 15. Схема диализатора:

А – дисперсная система; Б – растворитель (вода); М – мембрана

Недостатком метода является большая длительность процесса очистки (недели, месяцы).

Электродиализ – это процесс диализа в условиях наложения постоянного электрического поля, под действием которого катионы и анионы приобретают направленное движение к электродам, и процесс очистки значительно ускоряется.

Компенсационный или вивидиали з применяют тогда, когда необходимо освободиться лишь от части низкомолекулярных примесей. В этом случае растворитель заменяют раствором НМВ, которые необходимо оставить в коллоидном растворе.

По принципу вивидиализа работает аппарат «искусственная почка» (АИП) (рис.16), применяемый при острой почечной недостаточности, которая может наступить в результате отравления, при тяжелых ожогах и т.п.

Рис. 16. Схема аппарата «Искусственная почка»

Аппарат для гемодиализа (прообраз АИП) создал амер. ученый Дж. Абель в 1913 году, а голландский ученый В.Колф в 1944 году впервые применил его на практике.

Работа искусственной почки основана на принципе диализа веществ через полупроницаемую мембрану (целлофан) вследствие разницы их концентраций в крови и диализирующем растворе, который содержит основные электролиты крови и глюкозу в близких к физиологическим концентрациях и не содержит веществ, которые надо удалять из организма (мочевина, креатинин, мочевая кислота, сульфаты, фосфаты и др.). Белки, форменные элементы крови, бактерии и вещества с молекулярной массой более 30000 через мембрану не проходят. При гемодиализе, т. е. работе искусственной почки, кровь больного отсасывается через катетер (1) насосом (2) из нижней полой вены, проходит внутри камер из целлофановых листов диализатора (3), которые снаружи омываются диализирующим раствором, подаваемым другим насосом, и, частично очищенная, возвращается в одну из поверхностных вен. Гемодиализ проводится от 4 до 12 ч; в течение этого времени, чтобы кровь не свёртывалась, в неё вводят противосвёртывающие вещества (гепарин). При острой почечной недостаточности гемодиализ повторяют через 3–6 дней до восстановления функции почек; при хронической недостаточности, когда его необходимо проводить 2–3 раза в неделю в течение нескольких месяцев или лет, между лучевой артерией и поверхностной веной предплечья устанавливают тефлоновый шунт, с которым и соединяют искусственную почку. В этом случае кровь может поступать в диализатор без использования насоса.



Ультрафильтрация – фильтрование дисперсной системы через полупроницаемую мембрану, пропускающую дисперсионную среду с низкомолекулярными примесями и задерживающую частицы дисперсной фазы или макромолекулы.

Для ускорения процесса ультрафильтрации ее проводят, создавая разность давления на мембране, понижая давление под мембраной (создавая разрежение, вакуумируя) или повышая давление над мембраной. Для предотвращения разрыва мембраны ее помещают на твердую пористую пластинку (рис. 17).

Гидрофобные золи при их образовании почти всегда «загрязняются» различными примесями, чаще всего электролитами. Особенно загрязняются золи, в которых в избытке введен стабилизатор. Чаще в системе присутствует исходный электролит. Для получения коллоидных растворов с наибольшей устойчивостью необходимо удалять из них примеси. Рассмотрим различные методы очистки золей.

3.1 Диализ

Диализ – это процесс освобождения коллоидных растворов от примесей, способных проникать через полупроницаемые мембраны. Этот метод очистки, предложенный еще Грэмом, является наиболее простым и доступным. Процесс очистки основан на способности примесных ионов и молекул малых размеров свободно проникать через полупроницаемые мембраны, тогда как крупные коллоидные частицы такой способностью не обладают.

Полупроницаемыми являются различные растительные, животные и искусственные мембраны; их можно приготовить из пергамента, бычьего, свиного и рыбьего пузыря; из коллодия, целлофана и т.д. Приборы, в которых проводится диализ, называют диализаторами. На рис 20 изображен простейший диализатор Грэма.

Рис 2 Схема простейшего диализатора

тп - полупроницаемая перепонка (мембрана)

В нем очищаемый золь контактирует с проточной дистиллированной водой через полупроницаемую мембрану. Чем больше разность концентраций по обе стороны мембраны, тем эффективнее идет диализ. Вот почему очистка золя ускоряется, если во внешней камере диализатора вода проточная или часто сменяется. Однако даже при этих условиях диализ идет очень медленно, длится иногда недели и даже месяцы и требует огромного количества растворителя. Для ускорения процесса диализа было предложено использовать электрический ток.


3.2 Электродиализ

Этот метод представляет собой ускоренный процесс диализа с применением электрического тока. В электродиализаторах различных конструкций имеется три камеры (рис.21) с внутренними стенками из полупроницаемых мембран. В среднюю камеру наливают коллоидный раствор, подлежащий очистке, а во внешние камеры растворитель – проточную воду. Во внешних камерах находятся электроды, на которые подается напряжение постоянного тока. При падении потенциала 20-50 в/см и более образуется направленное движение ионов к соответствующим электродам. Поскольку ионы свободно проходят через полупроницаемую перегородку, а коллоидно-дисперсные частицы не проходят, коллоидный раствор постепенно очищается от электролитов.

Рис 3 Электродиализатор Паули; 1 – коллоидный раствор; 2 – электроды

Продолжительность электролиза в отличие от простого диализа измеряется не днями, а лишь часами и минутами, причем затрата растворителя сведена до минимума. В настоящее время широкое применение метод электродиализа получил в биохимии и медицине, а также в народном хозяйстве.

3.3 Компенсационный диализ или вивидиализ

Для исследования биологических жидкостей Михаэлисом и Рона был предложен метод, позволяющий определять концентрацию тех или иных низкомолекулярных веществ, находящихся в свободном состоянии в коллоидных растворах.

Сущность компенсационного диализа заключается в том, что жидкость в диализаторе омывается не чистым растворителем, а растворами с различными концентрациями определяемого вещества. Так, например, сахар в сыворотке крови, не связанный с белками, определяется путем диализа сыворотки против изотонического раствора, к которому прибавляют различные количества сахара. Концентрация сахара в солевом растворе при диализе не меняется лишь в том случае, если оно равно концентрации свободного сахара в сыворотке. Этот метод позволяет судить об истинных концентрациях веществ в исследуемых коллоидных растворах. Таким путем, например, было выявлено наличие глюкозы и мочевины в крови в свободном состоянии.

Примерно на том же принципе основано прижизненное определение низкомолекулярных составных частей крови методом вивидиализа (вивидиффузия по Абелю). В концы перерезанного кровеносного сосуда вставляют стеклянные канюли, разветвленные части которой соединяются между собой трубочками из коллодия и вся система погружается в сосуд, заполняемый физиологическим раствором NaCL или водой. Было установлено, что аммиакаты в крови, так же как и глюкоза, могут находиться в свободном состоянии.

На принципе компенсационного вивидиализа был сконструирован аппарат, получивший название «искусственной почки», при помощи которого можно освобождать кровь от продуктов обмена веществ и, следовательно, временно замещать функцию больной почки. Показаниями к применению «искусственной почки» является острая почечная недостаточность, например, при отравлении сулемой, сульфаниламидными препаратами, при уремии после переливания крови, при тяжелых ожогах, токсикозе беременности и т.п.

3.4 Ультрафильтрация

Ультрафильтрацией называют фильтрование коллоидного раствора через полупроницаемые мембраны, которые укрепляются в специальных ультрафильтрах на твердой пористой подкладке.


Рис 5 Ультрафильтрация под давлением

Применяя для ультрафильтров мембраны с определенной степенью пористости, можно в известной мере произвести разделение коллоидных частиц и одновременно приближенно определить их размеры. Этим методом впервые были определены размеры целого ряда вирусов и бактериофагов.

В настоящее время методы ультрафильтрации иногда применяют в сочетании с электродиализом. Этот комбинированный метод получил название метода электроультрафильтрации. В таблице 4 дано сопоставление относительных скоростей очистки по различным методам при сравнимых условиях.

Таблица 4

Относительные скорости очистки растворов

Как видим, метод электроультрафильтрации по скорости превосходит метод электродиализа. Идея этого метода впервые была высказана в 1913г. А.В.Думанским, который применил центрифугу для осаждения коллоидных частиц. За последние годы этот метод получил исключительно широкое применение в коллоидной химии. В ультрацентрифуге оседают не только коллоидные частицы гидрофобных коллоидов, но и молекулы белков и высокомолекулярных соединений. Данный метод используют для вычисления молекулярного веса высокомолекулярных соединений, для определения среднего радиуса коллоидных частиц.

Два метода получения дисперсных систем – диспергирование и конденсация

Диспергирование и конденсация – методы получения свободнодисперсных систем: порошков, суспензий, золей, эмульсий и т. Д. Под диспергированием понимают дробление и измельчение вещества, под конденсацией – образование гетерогенной дисперсной системы из гомогенной в результате ассоциации молекул, атомов или ионов в агрегаты.

В мировом производстве различных веществ и материалов процессы диспергирования и конденсации занимают одно из ведущих мест. Миллиарды тонн сырья и продуктов получают в свободнодисперсном состоянии. Это обеспечивает удобство их транспортирования и дозировки, а также дает возможность получать однородные материалы при составлении смесей.

В качестве примеров можно привести дробление и измельчение руд, каменного угля, производство цемента. Диспергирование происходит при сжигании жидкого топлива.

Конденсация происходит при образовании тумана, при кристаллизации.

Необходимо отметить, что при диспергировании и конденсации образование дисперсных систем сопровождается возникновением новой поверхности, т. Е. увеличением удельной площади поверхности веществ и материалов иногда в тысячи и более раз. Поэтому получение дисперсных систем, за некоторым исключением, требует затрат энергии.

При дроблении и измельчении материалы разрушаются в первую очередь в местах прочностных дефектов (макро- и микротрещин). Поэтому по мере измельчения прочность частиц возрастает, что ведет к увеличению расхода энергии на их дальнейшее диспергирование.

Разрушение материалов может быть облегчено при использовании эффекта Ребиндера адсорбционного понижения порочности твердых тел. Этот эффект заключается в уменьшении поверхностной энергии с помощью поверхностно-активных веществ, в результате чего облегчается деформирование и разрушение твердого тела. В качестве таких поверхностно-активных веществ, называемых в данном случае понизителями твердости, могут быть использованы, например, жидкие металлы для разрушения твердых металлов или типичные ПАВ.

Для понизителей твердости характерны малые количества, вызывающие эффект Ребиндера, и специфичность действия. Добавки, смачивающие материал, помогают проникнуть среде в места дефектов и с помощью капиллярных сил также облегчают разрушение твердого тела. Поверхностно-активные вещества не только способствуют разрушению материала, но и стабилизируют дисперсное состояние, препятствуя слипанию частиц.

Системы с максимальной степенью дисперсности могут быть получены только с помощью конденсационных методов.

Коллоидные растворы можно получать также и методом химической конденсации , основанном на проведении химических реакций, сопровождающихся образованием нерастворимых или малорастворимых веществ. Для этой цели используются различные типы реакций – разложения, гидролиза, окислительно-восстановительные и т.д.

Очистка дисперсных систем.

Золи и растворы высокомолекулярных соединений (ВМС) содержат в виде нежелательных примесей низкомолекулярные соединения. Их удаляют следующими методами.

Диализ. Диализ был исторически первым методом очистки. Его предложил Т. Грэм (1861). Схема простейшего диализатора показана на рис. 3 (смотри приложение). Очищаемый золь, или раствор ВМС, заливают в сосуд, дном которого служит мембрана, задерживающая коллоидные частицы или макромолекулы и пропускающая молекулы растворителя и низкомолекулярные примеси. Внешней средой, контактирующей с мембраной, является растворитель. Низкомолекулярные примеси, концентрация которых в золе или макромолекулярном растворе выше, переходят сквозь мембрану во внешнюю среду (диализат). На рисунке направление потока низкомолекулярных примесей показано стрелками. Очистка идет до тех пор, пока концентрации примесей в золе и диализате не станут близкими по величине (точнее, пока не выравняются химические потенциалы в золе и диализате). Если обновлять растворитель, то можно практически полностью избавиться от примесей. Такое использование диализа целесообразно, когда цель очистки – удаление всех низкомолекулярных веществ, проходящих сквозь мембрану. Однако в ряде случаев задача может оказаться сложнее – необходимо освободиться только от определенной части низкомолекулярных соединений в системе. Тогда в качестве внешней среды применяют раствор тех веществ, которые необходимо сохранить в системе. Именно такая задача ставится при очистке крови от низкомолекулярных шлаков и токсинов (солей, мочевины и т.п.).

Ультрафильтрация. Ультрафильтрация – метод очистки путем продавливания дисперсионной среды вместе с низкомолекулярными примесями через ультрафильтры. Ультрафильтрами служат мембраны того же типа, что и для диализа.

Простейшая установка для очистки ультрафильтрацией показана на рис. 4 (смотри приложение). В мешочек из ультрафильтра наливают очищаемый золь или раствор ВМС. К золю прилагают избыточное по сравнению с атмосферным давление. Его можно создать либо с помощью внешнего источника (баллон со сжатым воздухом, компрессор и т. П.), либо большим столбом жидкости. Дисперсионную среду обновляют, добавляя к золю чистый растворитель. Чтобы скорость очистки была достаточно высокой, обновление проводят по возможности быстро. Это достигается применением значительных избыточных давлений. Чтобы мембрана могла выдержать такие нагрузки, ее наносят на механическую опору. Такой опорой служат сетки и пластинки с отверстиями, стеклянные и керамические фильтры.

Микрофильтрация . Микрофильтрацией называется отделение с помощью фильтров микрочастиц размером от 0,1 до 10 мкм. Производительность микрофильтрата определяется пористостью и толщиной мембраны. Для оценки пористости, т. Е. отношения площади пор к общей площади фильтра, используют разнообразные методы: продавливание жидкостей и газов, измерение электрической проводимости мембран, продавливание систем, содержащих калиброванные частицы дисперсионной фазы, и пр.

Микропористые фильтры изготовляют из неорганических веществ и полимеров. Спеканием порошков можно получить мембраны из фарфора, металлов и сплавов. Полимерные мембраны для микрофильтрования чаще всего изготовляют из целлюлозы и ее производных.

Электродиализ. Очистку от электролитов можно ускорить, применяя налагаемую извне разность потенциалов. Такой метод очистки называется электродиализом. Его использование для очистки различных систем с биологическими объектами (растворы белков, сыворотка крови и пр.) началось в результате успешных работ Доре (1910). Устройство простейшего электродиализатора показано на рис. 5(смотри приложение). Очищаемый объект (золь, раствор ВМС) помещают в среднюю камеру 1, а в две боковые камеры наливают среду. В катодную 3 и анодную 5 камеры ионы проходят сквозь поры в мембранах под действием приложенного электрического напряжения.

Электродиализом наиболее целесообразно очищать тогда, когда можно применять высокие электрические напряжения. В большинстве случаев на начальной стадии очистки системы содержат много растворенных солей, и их электрическая проводимость высока. Поэтому при высоком напряжении может выделяться значительное количество теплоты, и в системах с белками или другими биологическими компонентами могут произойти необратимые изменения. Следовательно, электродиализ рационально использовать как завершающий метод очистки, применив предварительно диализ.

Комбинированные методы очистки. Помимо индивидуальных методов очистки – ультрафильтрации и электродиализа – известна их комбинация: электроультрафильтрация, применяемая для очистки и разделения белков.

Очистить и одновременно повысить концентрацию золя или раствора ВМС можно с помощью метода, называемого электродекантацией. Метод предложен В. Паули. Электродекантация происходит при работе электродиализатора без перемешивания. Частицы золя или макромолекулы обладают собственным зарядом и под действием электрического поля перемещаются в направлении одного из электродов. Так как они не могут пройти через мембрану, то их концентрация у одной из мембран возрастает. Как правило, плотность частиц отличается от плотности среды. Поэтому в месте концентрирования золя плотность системы отличается от среднего значения (обычно с ростом концентрации растет плотность). Концентрированный золь стекает на дно электродиализатора, и в камере возникает циркуляция, продолжающаяся до практически полного удаления частиц.

Коллоидные растворы и, в частности, растворы лиофобных коллоидов, очищенные и стабилизированные могут, несмотря на термодинамическую неустойчивость, существовать неопределенно долгое время. Растворы красного золя золота, приготовленные Фарадеем, до сих пор не подверглись никаким видимым изменениям. Эти данные позволяют считать, что коллоидные системы могут находиться в метастабильном равновесии.

Получение дисперсных систем связано в первую очередь с получением дисперсных частиц. Нужно решить следующие задачи:

  • 1) распределить дисперсные частицы в дисперсионной среде до необходимой концентрации;
  • 2) стабилизировать дисперсную систему, чтобы сохранить ее структуру и свойства в течение достаточно длительного времени;
  • 3) провести очистку дисперсной системы от различных примесей.

Эти задачи решают в зависимости от специфики (типа) той или иной дисперсной системы.

Получение дисперсных систем

Эмульсии. Поскольку эмульсии -- грубодисперсные системы, их обычно получают диспергационным методом. Жидкости, которые должны образовать эмульсию, интенсивно перемешивают или подвергают воздействию механических вибраций или ультразвука. Чтобы получить капли одинакового размера (т.е. монодисперсную систему), проводят гомогенизацию. Этот процесс заключается в продавливании жидкости дисперсной фазы в дисперсионную среду через небольшие отверстия требуемого диаметра под большим давлением. Такой прием используют, например, при обработке молока. В результате гомогенизации средний размер капель жира уменьшается примерно от 1 --3 до 0,1 --0,2 мкм.

Эмульсии получают также конденсационными методами (обычно -- заменой растворителя).

Самостоятельную задачу представляет получение высококонцентрированных эмульсий. К ним относят эмульсии с концентрацией дисперсной фазы более 74 об. %, вплоть до 99 об. %. Капли дисперсной фазы в таких эмульсиях, имеющие форму многогранных призм, разделены тонкими пленками жидкой дисперсионной среды.

Концентрированные эмульсин могут обладать механическими свойствами твердых тел -- прочностью и упругостью.

Специфика приготовления концентрированных эмульсий заключается в том, что дисперсная фаза вводится в дисперсионную жидкую среду небольшими порциями при интенсивном перемешивании.

Пены. Как и эмульсии, пены -- грубодисперсные системы. Поэтому во многих технологических процессах пены получают теми же диспергационными методами, которые применяют для получения газовых пузырьков.

Конденсационные методы получения пен основаны на пересыщении раствора газа в данной жидкости при соответствующем изменении температуры или давления. Используют также химические реакции с выделением газа. В качестве примера приведем реакцию, лежащую в основе приготовления пены в огнетушителях:

NaHCO 3 + HCl > NaCl + H 2 O+ СО 2 ^

Еще один конденсационный метод получения пен основан на использовании микробиологических процессов.

Коллоидные растворы. Получают коллоидные растворы (золи) различными конденсационными методами. Для получения высокодисперсных золей необходимо обеспечить выполнение следующего условия: скорость образования твердых частиц должна во много раз превышать скорость их роста. Чтобы выполнить это условие, при получении дисперсных частиц с помощью химических реакций часто используют такой способ: концентрированный раствор одного компонента вливают в небольшом количестве в сильно разбавленный раствор другого компонента при очень интенсивном перемешивании.

Гели. Приведенные выше системы являются свободнодисперсными. Получение связнодисперсных систем имеет определенную специфику. Рассмотрим в качестве примера получение гелей. Обычно их получают из коллоидных растворов (золей). При определенных условиях дисперсные частицы слипаются друг с другом -- происходит процесс коагуляции.

Если частицы имеют анизодиаметричсскую форму (стержни, эллипсоиды), то они соединяются преимущественно своими концами и образуют пространственную структуру (сетку), в ячейках которой находится жидкая дисперсионная среда. Процесс превращения золей в гели называют золь--гель-переход. Он имеет важное значение в нанотехнологии. Таким образом, гели, как и концентрированные эмульсии, иногда могут быть биконтинуальными дисперсными системами.

Свойства гелей весьма эффективно регулируют, изменяя концентрацию дисперсной фазы и форму дисперсных частиц. Еще один важный фактор -- температура: ее повышение затрудняет образование контактов между дисперсными частицами и поэтому прочность гелей снижается.